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Abstract. In this paper we prove the existence of solutions of the generalized vector equilibrium
problem in the setting of Hausdorff topological vector spaces. As applications, we present some rel-
evant particular cases: a generalized vector variational-like inequality in Hausdorff topological vector
spaces, and equilibrium problem in the case of pseudomonotone real functions, and a generalized
weak Pareto optima problem.

1. Introduction

Let K be a nonempty set andf : K × K → R be a real function defined on
K × K. The equilibrium problem with respect tof andK is defined to be the
problem of finding a pointx ∈ K such thatf (x, y) > 0 for eachy ∈ K. Equi-
librium problems are related to numerous important topics of nonlinear analysis
in optimization problems, variational inequalities, game theory, complementarity
systems, engineering, physics problems, etc. The literature concerning this matter
is extensive because of the wide variety and the nonlinearity of problems (see [6,
7] and the references given there). The aim of this paper is to present an overview
of a generalized vector equilibrium problem wheref is supposed to be a vector
valued function defined on a topological vector space. For a treatment of a similar
kind of vector equilibrium problems we refer? the reader to [2, 5, 8, 13–18]. The
paper is divided into three sections. In Section 2, we give an exposition of a gener-
alized vector equilibrium problem, and present some preliminaries. We introduce
a general pseudomonotonicity, such it was proposed by Karamardian (1976) for
real functions (see [12]), and general convexity for vector valued functions. In
the third section our main existence result of the generalized vector equilibrium
problem is stated and proved. The proof is based on the famous Fan lemma. The
last section is devoted to some examples of particular case of the main result. In
particular, we show a similar result to the one of Ansari [1] on vector variational-
like inequality problems. More precisely, we extend the data on the spaceX, the
subsetK, the functionf , and restrict ourselves to the case of single-valued map.
Also, we obtain as a consequence an existence result for equilibrium problem in

? The forthcoming papers [2, 5, 13 and 16] have been added by following the referee’s
suggestions.
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the case of pseudomonotone real functions (see for more general similar results [4]
and [7]). In the last remark, we give an application to vector optimization problems
and as a particular case we obtain existence of generalized weak Pareto Optima. A
careful comparison with the multivalued case in [15] shows that Corollary 4.3 is
optimal in a certain sense. More precisely, we cut down the single-valued setting,
while generalizing the conditions of compactness onK and continuity onf .

2. Generalized vector equilibrium problems and notations

From now on, letX andY be two topological vector spaces,K a closed convex
subset ofX andf a vector single-valued function defined onK × K. Let C be
a multivalued map fromK into Y . The following assumptions will be needed
throughout this paper: for each
(A) x ∈ K, f (x, x) = 0;
(B) x ∈ K,C(x) is a convex open cone inY such that−cl(C(x))∩ (C(x)∪{0}) =
{0}; for simplicity we say thatC(x) is a pointed cone.
Note that (B) implies 06∈ C(x) and−cl(C(x)) ∩ C(x) = ∅ for all x ∈ K. The
generalized vector equilibrium problem ((GVEP) for short) to be discussed in this
paper is denoted

find x̄ ∈ K such thatf (x̄, y) 6∈ C(x̄) for eachy ∈ K.
Let us now introduce some definitions we need in the next section. For this let us
denote by 2X the set of all nonempty subsets ofX, and by conv(A) the convex
hull of a subsetA of X. For a multivalued mapF : X → 2Y , clF point out the
multivalued map defined, for eachx ∈ X, by clF (x) := cl(F (x)), the closure of
F(x) in Y .

DEFINITION 1. LetX,Y be two vector spaces andK a subset ofX. a) a map
f : K ×K → Y is said to beC-pseudomonotone if for eachx, y ∈ K one has

f (x, y) /∈ C(x) H⇒ f (y, x) ∈ clC(x). (1)

b) A mapg : K → Y is said to beC-convex if for eachx, y ∈ K, α ∈ [0,1] one
has

g(αx + (1− α)y)− [αg(x)+ (1− α)g(y)] ∈ C(αx + (1− α)y) ∪ {0}
REMARKS. (1) Two classes ofC-pseudomonotone vector valued maps are intro-
duced and analysed in [16], i.e. for eachx, y ∈ K

f (x, y) 6∈ C H⇒ f (y, x) 6∈ −C (2)

or

f (x, y) ∈ −clC H⇒ f (y, x) ∈ clC. (3)
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These classes are related to each other by (1) implies (2) and (3).
(2) If we specify in the last definitionY to R andC(x) to R∗− for eachx ∈ K,
we obtain from (1), (2) and ((3) the existing definition of pseudomonotone real
functions [12], i.e.f (x, y) > 0 impliesf (y, x) 6 0 for eachx, y ∈ K. Also, in
this particular case, theC-convexity is exactly the classical definition of convexity
of real functions.

DEFINITION 2. LetX,Y be two topological vector spaces,K a convex subset of
X andF : K → 2Y a multivalued map.
F is said to be upper hemicontinuous atx ∈ K if for every y ∈ K and every

neighborhoodV of 0 in Y , there existsδ ∈ (0,1) such thatF(tx + (1− t)y) ⊆
F(x)+ V whent ∈ [0, δ).

If F is a single-valued map we then say thatF is hemicontinuous atX.

DEFINITION 3. A multivalued mapF : A ⊂ X → 2X is calledKKM-map, if
for every finite subset{x1, x2, . . . , xn} of A,

conv{x1, x2, . . . , xn} ⊂
n⋃
i=1

F(xi).

We also need the following KKM-Fan Lemma [9].

LEMMA 2.1. LetA be a subset of a Hausdorff topological vector spaceE and
F : A→ 2E be a KKM-map, such that for eachx ∈ A, F(x) is a closed subset of
E and for at least onex0 ∈ A, F(x0) is compact. then

⋂
x∈A F(x) 6= ∅.

3. Existence result

Summarizing the data of the next section we can state the following main result of
this paper.

THEOREM 3.1. Let X be a Hausdorff topological vector space,Y be a topo-
logical vector space,K a nonempty closed convex subset ofX. Considerf :
K × K → Y a vector valued function andC : K → 2Y a multivalued map
such that for eachx ∈ K,C(x) is an open convex pointed cone. Suppose moreover
that
(H0) f isC-pseudomonotone;
(H1) for eachx ∈ K, {y ∈ K : f (x, y) ∈ clC(y)} is closed andf (x, .) is

C-convex;
(H2) clC is upper hemicontinuous onK;
(H3) for eachy ∈ K, f (., y) is hemicontinuous;
(H4) there exist a compact subsetB ⊂ X and a vectory0 ∈ K ∩ B such that
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f (x, y0) ∈ C(x) for eachx ∈ K \ B.
Then (GVEP) has a solution.

Proof.To prove the theorem, we first let the multivalued mapsF1 andF2 defined
for eachy ∈ K by

F1(y) := {x ∈ K : f (x, y) /∈ C(x)} and

F2(y) := {x ∈ K : f (y, x) ∈ clC(x)}.
Note thatF1 andF2 are defined at all points ofK, since the assumption (A) implies
thaty ∈ F1(y) ∩ F2(y) for eachy ∈ K.

Saying that(GVEP) has a solution means that
⋂
y∈K F1(ẏ) 6= ∅. This state-

ment will be proved when we show the inclusions

∅ 6=
⋂
y∈K

clF1(y) ⊂
⋂
y∈K

F2(y) ⊂
⋂
y∈K

F1(y).

Step 1. The inclusionF1(y) ⊂ F2(y) is a direct consequence of pseudomonoton-
icity of f . From(H1) the subsetF2(y) is closed and thusclF1(y) ⊂ F2(y).
To prove

⋂
y∈k F2(y) ⊂ ⋂

y∈K F1(y), let x̄ ∈ ⋂y∈K F2(y), i.e. for each
y ∈ K one hasf (y, x̄) ∈ clC(x̄). Let us fix an elementy of K and set
yt = ty+ (1− t)x̄, for 0< t < 1, thenf (yt , x̄) ∈ clC(x̄). ByC-convexity
of f (yt , .) one hasf (yt , yt )− [tf (yt , y)+ (1− t)f (yt , x̄)] ∈ C(yt)∪ {0}.
SinceC(yt ) andC(x̄) are nonempty cones, we obtain

f (yt , x̄)− f (yt , y) ∈ 1

t
(f (yt , x̄)+ C(yt ) ∪ {0})

⊂ clC(x̄)+ clC(yt ). (4)

By upper hemicontinuity ofclC we obtain for a neighborhoodV of 0 in
Y the existence of someδV ∈ (0,1) such that,clC(yt ) ⊂ clC(x̄) + V for
everyt ∈ (0, δV ).
Combining the two last inclusions and using the hemicontinuity off we
obtain−f (x̄, y) ∈ clC(x̄)+ V .
This still true for every neighborhoodV in K, thus−f (x̄, y) ∈ clC(x̄).
From what has already been noted in (B), since the cone is pointed, we
have

f (x̄, y) /∈ C(x̄),
which is x̄ ∈ F1(y). We conclude that

⋂
y∈K F2(y) ⊂⋂y∈K F1(y).

Step 2. Let us show that
⋂
y∈K clF1(y) 6= ∅. The proof is based on the Fan lemma.

To verify thatclF1 is aKKM-map, fixx1, x2, . . . , xn ∈ K, and suppose
the existence ofx ∈ conv({x1, x2, . . . , xn}) such thatx /∈ ⋂n

i=1 clF1(xi).
Then there existλ1, . . . , λn > 0 with λni=1 λi = 1 and x=∑n

i=1 λixi , such
that

f (x, xi) ∈ C(x) for eachi ∈ {1,2, . . . , n}.
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SinceC(x) is a convex cone, it follows that
∑n

i=1 λif (x, xi) ∈ C(x). Now
f (x, .) isC-convex andf (x, x) = 0 we than have

−
n∑
i=1

λif (x, xi) = f (x, x) −
n∑
i=1

λif (x, xi) ∈ C(x) ∪ {0}.

This contradicts the fact thatC(x) is a pointed cone. The only point remaining
concerns the compactness assumption in the Fan Lemma. By (H4) there exist a
compact subsetB of X and y0 ∈ K ∩ B such thatf (x, y0) ∈ C(x) for each
x ∈ K \ B. This thus getF1(y0) ⊂ B, and givesclF1(y0) is compact; which
completes the proof. 2
REMARKS. (1) Note that if the convex subsetK of X is compact then the hypo-
thesis (H4) may be suppressed, since in this case one has thatF2(y) is compact for
eachy ∈ K.
(2) The first assertion in condition (H1) is fulfilled if the multivalued mapclC has
a closed graph and, for everyx ∈ K, f (x, .) is continuous.

Indeed, let us consider a net(yi) in F2(x) := {y ∈ K : f (x, y) ∈ clC(y)} such
that (yi) converges to somey in K. By continuity off (x, .) we havef (x, y) =
limi f (x, yi ). Since the graph ofclC is closed, we conclude thatf (x, y) ∈ clC(y);
that isy ∈ F2(x). ThusF2(x) is closed. 2

4. Some consequences of the main result

In order to clarify the interest of the generalized vector equilibrium problem, we
consider some examples of problems for which we can ensure the existence of
solutions by relying on.

4.1. VECTOR VARIATIONAL -LIKE INEQUALITY PROBLEM

As a first example of particular case of the generalized vector equilibrium problem,
let us consider the following

(V V IP ) find x̄ ∈ K such that〈T (x̄), η(y, x̄)〉 6∈ C(x̄) for eachy ∈ K.
HereT : X → L(X, Y ) is a single-valued map fromX into the spaceL(X, Y )
of all linear continuous map fromX into Y , K is a subset ofX 〈T (x), y〉 is the
evaluation ofT (x) in y andη : K × K → Y is a continuous and affine map with
η(x, x) = 0 for all x ∈ K.

DEFINITION 4. T : X → L(Y,X) is said to beC-pseudomonotone if the
functionf (x, y) = 〈T (x), η(y, x)〉 isC-pseudomonotone.

Thus we can state the following
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COROLLARY 4.1. LetX be a Hausdorff topological vector space,Y a topolo-
gical vector space andK a closed convex subset ofX. Suppose that
(i) T : X→ L(X, Y ) is a single-valued hemicontinuous andC-pseudomonotone

operator;
(ii) C : K → 2Y is a multivalued map such that for eachx ∈ K, C(x) is an open

convex and pointed cone;
(iii) clC has a closed graph;
(iv) there exist a compact subsetB of X and y0 ∈ K ∩ B such that for each

x ∈ K \ B one has

〈T (x), η(y0, x)〉 ∈ C(x).
Then(V V IP ) has at least one solution.

Proof.Let us considerf : K ×K → X defined byf (x, y) = 〈T (x), η(y, x)〉.
Condition (H2) and (H4) of the main theorem are satisfied.C-convexity off in
(H1) and continuity off (x, .) are deduced from continuity and affiness ofη. As-
sumption (H3) is an immediate consequence of the hemicontinuity ofT and the
continuity ofη. 2
REMARKS. i) This corollary is analogous with an existence result of Ansari [1]
for multivalued map. More precisely, Ansari consider the restrictive situation where
X is a reflexive Banach space,K is a bounded closed convex subset ofX and the
multivalued mapW(x) = Y \ C(x) is upper semicontinuous and concave (i.e. for
eachx, y ∈ K andα ∈ [0,1]αW(x) + (1− α)W(y) ⊇ W(αx + (1− α)y)).
ii) If η(x, y) = x − y then(V V IP ) is reduced to the following vector variational
problem(Q) studied by Chen [8]

(Q) find x̄ ∈ K such that〈T (x̄), y − x̄〉 6∈ C(x̄) for eachy ∈ K.

4.2. EQUILIBRIUM PROBLEMS

In order to give concrete examples, let us takeY = R andC(x) = R∗−, we then
obtain the following classical real equilibrium problem

(EP ) find x0 ∈ K such thatf (x0, y) > 0 for eachy ∈ K.
We obtain

COROLLARY 4.2. LetX be a Hausdorff topological vector space,K a nonempty
closed convex subset ofX andf : K ×K → R. Suppose that
(i) f (., y) is hemicontinuous for eachy ∈ K;
(ii) f (x, .) is convex and lower semicontinuous for eachx ∈ K;
(iii) f is pseudomonotone;
(iv) there existB ⊂ X compact andy0 ∈ K ∩ B such thatf (x, y0) < 0 for each

x ∈ K \ B.
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Then(EP ) possesses a solution.

REMARKS. (1) Many authors have contributed to the study of(EP ) in different
forms. We can see in this subject recent works of Baiocchi- Capelo [3], Blum-
Oettli [6], Bianchi-Schaible [4] and Chadli-Chbani- Riahi [7] and the bibliography
therein.
(2) By considering the particular casef (x, y) = 〈T (x), y − x〉 whereT , fromX

into its topological dualX∗, is an operator of monotone type, the problem(GVEP)
becomes the following variational inequality problem

(V IP ) find x0 ∈ K such that〈T (x0), y − x0〉 > 0 for eachy ∈ K.

To this subject we can consult a recent work of Hadjisavvas and Schaible [10].
(3) If in addition,X is a reflexive Banach space or it’s a topological dual of some
Banach space, the assumption (H4) can be replaced by the following weak coercive
assumption: existsy0 ∈ K such that lim supf (x, y0) < 0 whenx ∈ K and‖x −
y0‖ → +∞.

Indeed, by hypothesis one can findR > 0 such thatf (x, y0) < 0 for each
x ∈ K with ‖x − y0‖ > R. Then weak or weak∗ compactness ofB(y0, R) = {y ∈
X : ‖y − y0‖ 6 R} implies condition (iv) of Corollary 4.2

4.3. GENERALIZED PARETO OPTIMA

The third example of vector equilibrium problem, we consider, is the following
generalized weak Pareto Optima problem

(GWPOP) find x̄ ∈ K such thatϕ(y)− ϕ(x̄) 6∈ C(x̄) for eachy ∈ K.

whereX is a Hausdorff topological vector space,Y a topological vector space,
K a closed convex subset ofX, ϕ : K → Y is a vector valued function and
C : K → 2Y is a multivalued map such that for eachx ∈ K, the open convex cone
C(x) is pointed.

By consideringf (x, y) = ϕ(y)−ϕ(x), we obtain as an immediate consequence
the following corollary.

COROLLARY 4.3. Suppose that
(i) ϕ is continuous,C-convex.
(ii) clC has a closed graph;
(iii) there exist aB compact subset ofX andy0 ∈ K ∩ B such that

ϕ(y0)− ϕ(x) ∈ C(x) for eachx ∈ K \ B.
Then(GWPOP) has a solution.
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REMARKS. (1) in the particular case whereY = RN and for eachu ∈ K
C(u) := C = {x ∈ RN : xi < 0, i = 1, . . . , N},

we have under assumptions i) and ii) of the precedent corollary the existence of a
weak Pareto Optima, i.e.ϕ(K) ∩ (ϕ(u)+ C ∪ {0}) = {ϕ(u)}.
(2) Corollary 4.3 is a generalization, in the case of single-valued functions, of a
result [15, Corollary 5-6 p. 59] on existence of solutions of vector optimization
problems.
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