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Abstract. In this paper we prove the existence of solutions of the generalized vector equilibrium
problem in the setting of Hausdorff topological vector spaces. As applications, we present some rel-
evant particular cases: a generalized vector variational-like inequality in Hausdorff topological vector
spaces, and equilibrium problem in the case of pseudomonotone real functions, and a generalized
weak Pareto optima problem.

1. Introduction

Let K be a nonempty set anfl : K x K — R be a real function defined on

K x K. The equilibrium problem with respect t6 and K is defined to be the
problem of finding a poink € K such thatf(x, y) > 0 for eachy € K. Equi-
librium problems are related to humerous important topics of nonlinear analysis
in optimization problems, variational inequalities, game theory, complementarity
systems, engineering, physics problems, etc. The literature concerning this matter
is extensive because of the wide variety and the nonlinearity of problems (see [6,
7] and the references given there). The aim of this paper is to present an overview
of a generalized vector equilibrium problem whefés supposed to be a vector
valued function defined on a topological vector space. For a treatment of a similar
kind of vector equilibrium problems we refethe reader to [2, 5, 8, 13-18]. The
paper is divided into three sections. In Section 2, we give an exposition of a gener-
alized vector equilibrium problem, and present some preliminaries. We introduce
a general pseudomonotonicity, such it was proposed by Karamardian (1976) for
real functions (see [12]), and general convexity for vector valued functions. In
the third section our main existence result of the generalized vector equilibrium
problem is stated and proved. The proof is based on the famous Fan lemma. The
last section is devoted to some examples of particular case of the main result. In
particular, we show a similar result to the one of Ansari [1] on vector variational-
like inequality problems. More precisely, we extend the data on the spatiee
subsetK, the functionf, and restrict ourselves to the case of single-valued map.
Also, we obtain as a consequence an existence result for equilibrium problem in

* The forthcoming papers [2, 5, 13 and 16] have been added by following the referee’s
suggestions.
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the case of pseudomonotone real functions (see for more general similar results [4]
and [7]). In the last remark, we give an application to vector optimization problems
and as a particular case we obtain existence of generalized weak Pareto Optima. A
careful comparison with the multivalued case in [15] shows that Corollary 4.3 is
optimal in a certain sense. More precisely, we cut down the single-valued setting,
while generalizing the conditions of compactnesskoand continuity onf.

2. Generalized vector equilibrium problems and notations

From now on, letX andY be two topological vector spacek, a closed convex
subset ofX and f a vector single-valued function defined & x K. Let C be

a multivalued map fromK into Y. The following assumptions will be needed
throughout this paper: for each

(A)x ek, f(x,x) =0;

(B) x € K, C(x) is a convex open cone in such that-c/(C(x))N(C(x) U{0}) =

{0}; for simplicity we say thaC (x) is a pointed cone.

Note that (B) implies 0¢ C(x) and—cl(C(x)) N C(x) = @ forall x € K. The
generalized vector equilibrium problem ((GVEP) for short) to be discussed in this
paper is denoted

find x € K such thatf (x, y) ¢ C(x) for eachy € K.

Let us now introduce some definitions we need in the next section. For this let us
denote by 2 the set of all nonempty subsets &f and by conyA) the convex

hull of a subsetA of X. For a multivalued mag” : X — 2Y, ¢/ F point out the
multivalued map defined, for eaache X, by ¢/ F(x) := cl(F(x)), the closure of
F(x)inY.

DEFINITION 1. LetX,Y be two vector spaces arkl a subset ofX. a) a map
f: K x K — Y is said to beC-pseudomonotone if for each y € K one has

fx,y) ¢ C(x) = f(y,x) € clCx). 1)

b) Amapg : K — Y is said to beC-convex if for eachy, y € K, « € [0, 1] one
has

glax+ (1 —-a)y) —[agx) + (L—a)g(y)] € Clax + (L —a)y) U {0}

REMARKS. (1) Two classes af-pseudomonotone vector valued maps are intro-
duced and analysed in [16], i.e. for eachy € K

J,y) ¢C= f(y.x) ¢ =C (2)

or

f(x,y) € —clC = f(y,x) eclC. 3



ON GENERALIZED VECTOR EQUILIBRIUM PROBLEMS 35

These classes are related to each other by (1) implies (2) and (3).

(2) It we specify in the last definitiory to R and C(x) to R* for eachx € K,

we obtain from (1), (2) and ((3) the existing definition of pseudomonotone real
functions [12], i.e.f(x, y) > 0 implies f(y, x) < O for eachx,y € K. Also, in

this particular case, thé-convexity is exactly the classical definition of convexity
of real functions.

DEFINITION 2. LetX, Y be two topological vector space,a convex subset of
X andF : K — 2' a multivalued map.

F is said to be upper hemicontinuousxat K if for every y € K and every
neighborhoodV of 0 in Y, there exist$ € (0, 1) such thatF(rx + (1 — t)y) C
F(x) + V whenr € [0, §).

If F is a single-valued map we then say ttiais hemicontinuous aXx.

DEFINITION 3. A multivalued mapF : A ¢ X — 2¥ is calledK K M-map, if
for every finite subsefxs, x,, ... , x,,} of A,

n
conv{xy, x2, ... ,x,} C U F(x;).
i=1

We also need the following KKM-Fan Lemma [9].

LEMMA 2.1. Let A be a subset of a Hausdorff topological vector sp@tand
F : A — 2F be a KKM-map, such that for eache A, F(x) is a closed subset of
E and for at least oneg € A, F(xo) is compact. thefi),_, F(x) # .

3. Existence result

Summarizing the data of the next section we can state the following main result of
this paper.

THEOREM 3.1. Let X be a Hausdorff topological vector spacg, be a topo-

logical vector spacekK a nonempty closed convex subsetXof Consider f

K x K — Y a vector valued function and' : K — 2! a multivalued map

such that for eacly € K, C(x) is an open convex pointed cone. Suppose moreover

that

(Ho) f is C-pseudomonotone;

(H;) foreachx € K,{y € K : f(x,y) € clC(y)} is closed andf(x,.) is
C-convex;

(H2) clC is upper hemicontinuous oki;

(Hs) foreachy € K, f(.,y) is hemicontinuous;

(H4) there exist a compact subsktc X and a vectoryg € K N B such that



36 O. CHADLI AND H. RIAHI

f(x,yo) € C(x) foreachx € K \ B.

Then (GVEP) has a solution.
Proof. To prove the theorem, we first let the multivalued mapand F, defined
for eachy € K by

Fi(y):={xeK: f(x,y) ¢ C(x)} and
Fo(y):={xeK: f(y,x) € clC(x)}.

Note thatF; and F; are defined at all points &, since the assumption (A) implies
thaty € F1(y) N F»(y) for eachy € K.

Saying that(GV E P) has a solution means th@l, _, Fi(y) # #. This state-
ment will be proved when we show the inclusions

B [ clFiy) C [ F20) € () Fa(y).

yekK yekK yekK

Step 1. The inclusiorF1(y) C F»(y) is a direct consequence of pseudomonoton-
icity of f. From(H,) the subsefF,(y) is closed and thud F1(y) C F»(y).
To proveﬂyek F(y) C ﬂyeK Fi(y), letx € ﬂyeK F>(y), i.e. for each
y € K one hasf(y, x) € clC(x). Let us fix an elemeny of K and set
vy =ty+(1—0)x,for0 <t < 1, thenf(y;, X) € cIC(x). By C-convexity
of f(y;,.) one hasf (y;, y) = [tf (ye, y) + A —1) f (1, X)] € C(y,) U{0O}.
SinceC(y;) andC(x) are honempty cones, we obtain

1
SO x) = fOry) € A (f (s, x) + C(y) U{0})
C clC(x) + clC(yy). 4

By upper hemicontinuity of/C we obtain for a neighborhoott of 0 in

Y the existence of som%, € (0, 1) such thatcIC(y;) C cIC(x) + V for
everyr € (0, §y).

Combining the two last inclusions and using the hemicontinuity afie
obtain— f(x, y) € cIC(x) + V.

This still true for every neighborhoolt in K, thus— f(x, y) € clC(x).

From what has already been noted in (B), since the cone is pointed, we
have

f&x,y) ¢ CK),

which isx € F1(y). We conclude tha{ﬂyeK F>(y) C ﬂyeK Fi(y).
Step 2. Let us show thﬁt]yeK clF1(y) # . The proof is based on the Fan lemma.

To verify thatcl F; is a K K M-map, fixxy, x2, ... ,x, € K, and suppose
the existence of € conv({x1, x2, ..., x,}) such thate ¢ ('_; c[F1(x;).
Then there existy, ... , A, > 0OwithA!_; A, =1and x= )", A;x;, such
that

f(x,x;) € C(x) foreachi € {1,2,... ,n}.
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SinceC(x) is a convex cone, it follows thg!_; 1; f(x, x;) € C(x). Now
f(x,.)is C-convex andf (x, x) = 0 we than have

=Y hif(x) = fx,x) = ) Aif(x,x) € C(x) U{O}.

i=1 i=1

This contradicts the fact th&@(x) is a pointed cone. The only point remaining
concerns the compactness assumption in the Fan Lemma. Byheéte exist a
compact subseB of X andy, € K N B such thatf(x, yp) € C(x) for each

x € K \ B. This thus getFi(yo) C B, and givescl F1(yg) is compact; which
completes the proof. a

REMARKS. (1) Note that if the convex subskEtof X is compact then the hypo-
thesis (H) may be suppressed, since in this case one hagilat is compact for
eachy € K.

(2) The first assertion in condition ¢Mis fulfilled if the multivalued map:/C has
a closed graph and, for everye K, f(x, .) is continuous.

Indeed, let us consider an@t) in Fo(x) :={y € K : f(x,y) € cIC(y)} such
that (y;) converges to someg in K. By continuity of f(x,.) we havef(x,y) =
lim; f(x, y;). Since the graph afiC is closed, we conclude thdt(x, y) € cIC(y);
thatisy € F>(x). ThusF»(x) is closed. O

4. Some consequences of the main result

In order to clarify the interest of the generalized vector equilibrium problem, we
consider some examples of problems for which we can ensure the existence of
solutions by relying on.

4.1. VECTOR VARIATIONAL-LIKE INEQUALITY PROBLEM

As a first example of particular case of the generalized vector equilibrium problem,
let us consider the following

(VVIP)findx € K such tha{T (x), n(y, x)) € C(x) for eachy € K.

HereT : X — L(X,Y) is a single-valued map fromX into the spacd.(X,Y)
of all linear continuous map fronX into Y, K is a subset ofX (T (x), y) is the
evaluation ofT'(x) in y andn : K x K — Y is a continuous and affine map with
n(x,x) =0forallx € K.

DEFINITION4. T : X — L(Y, X) is said to beC-pseudomonotone if the
function f(x, y) = (T (x), n(y, x)) is C-pseudomonotone.

Thus we can state the following
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COROLLARY 4.1. Let X be a Hausdorff topological vector spacg,a topolo-

gical vector space and a closed convex subset ¥t Suppose that

() T:X — L(X,Y)isasingle-valued hemicontinuous a@gpseudomonotone
operator;

(i) C:K — 2¥isamultivalued map such that for eache K, C(x) is an open
convex and pointed cone;

(i) ¢IC has a closed graph;

(iv) there exist a compact subsstof X and yo € K N B such that for each
x € K\ Bone has

(T(x), n(yo, x)) € C(x).

Then(VVIP) has at least one solution.

Proof. Let us considerf : K x K — X defined byf (x, y) = (T (x), n(y, x)).
Condition (H) and (H,) of the main theorem are satisfied-convexity of f in
(H1) and continuity off (x, .) are deduced from continuity and affinessiofAs-
sumption (H) is an immediate consequence of the hemicontinuity” aind the
continuity of . a

REMARKS. i) This corollary is analogous with an existence result of Ansari [1]
for multivalued map. More precisely, Ansari consider the restrictive situation where
X is a reflexive Banach spack, is a bounded closed convex subseXoéind the
multivalued mapW (x) = Y \ C(x) is upper semicontinuous and concave (i.e. for
eachx,y € K anda € [0, LlaW(x) + A —a)W(y) 2 W(ax + (1 — a)y)).

i) If n(x,y) =x — ythen(VVIP)is reduced to the following vector variational
problem(Q) studied by Chen [8]

(Q) findx € K suchthat7T (x), y — x) ¢ C(x) for eachy € K.

4.2. EQUILIBRIUM PROBLEMS

In order to give concrete examples, let us tdke= R andC(x) = R*, we then
obtain the following classical real equilibrium problem

(EP) findxg € K such thatf (xo, y) > 0 for eachy € K.
We obtain

COROLLARY 4.2. LetX be a Hausdorff topological vector spadé,a nonempty

closed convex subset &fand f : K x K — R. Suppose that

(i) f(,y)is hemicontinuous for eache K;

(i) f(x,.) is convex and lower semicontinuous for each K;

(i) f is pseudomonotone;

(iv) there existB C X compact andyy € K N B such thatf (x, yo) < O for each
x e K\ B.
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Then(E P) possesses a solution.

REMARKS. (1) Many authors have contributed to the studyopP) in different
forms. We can see in this subject recent works of Baiocchi- Capelo [3], Blum-
Oettli [6], Bianchi-Schaible [4] and Chadli-Chbani- Riahi [7] and the bibliography
therein.

(2) By considering the particular cagéx, y) = (T (x), y — x) whereT, from X

into its topological duak™®, is an operator of monotone type, the problgiV E P)
becomes the following variational inequality problem

(VIP)find xg € K such that{T (xg), y — xo) > 0 for eachy € K.

To this subject we can consult a recent work of Hadjisavvas and Schaible [10].
(3) If in addition, X is a reflexive Banach space or it’'s a topological dual of some
Banach space, the assumption)kelan be replaced by the following weak coercive
assumption: existgy € K such that lim sugf (x, yo) < 0 whenx € K and|x —
Yol = +o0.

Indeed, by hypothesis one can fiRd > 0 such thatf (x, yo) < 0 for each
x € K with ||lx — yol| > R. Then weak or weakcompactness aB(yg, R) = {y €
X : |ly — yoll < R} implies condition (iv) of Corollary 4.2

4.3. GENERALIZED PARETO OPTIMA

The third example of vector equilibrium problem, we consider, is the following
generalized weak Pareto Optima problem

(GWPOP) findx € K such thatp(y) — ¢(x) € C(x) for eachy € K.

where X is a Hausdorff topological vector spacg,a topological vector space,
K a closed convex subset &f, ¢ : K — Y is a vector valued function and
C : K — 2" is a multivalued map such that for eacke K, the open convex cone
C(x) is pointed.

By consideringf (x, y) = ¢(y)—¢(x), we obtain as an immediate consequence
the following corollary.

COROLLARY 4.3. Suppose that

() ¢ is continuousC-convex.

(i) clIC has a closed graph;

(iii) there exist aB compact subset df andy, € K N B such that

©(yo) — ¢(x) € C(x) for eachx € K \ B.

Then(GW P O P) has a solution.
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REMARKS. (1) in the particular case where= R" and for each: € K
Cuy:=C={xeR":x;<0,i=1,...,N},

we have under assumptions i) and ii) of the precedent corollary the existence of a
weak Pareto Optima, i.e.(K) N (p(u) + C U {0}) = {pu)}.

(2) Corollary 4.3 is a generalization, in the case of single-valued functions, of a
result [15, Corollary 5-6 p. 59] on existence of solutions of vector optimization
problems.
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